
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 13, 1-31 (1991)

ALGEBRAIC GRID GENERATION FOR COMPLEX
GEOMETRIES

T. I-P. SHIH
Department of Mechanical Engineering. Carnegie Mellon University. Pittsburgh, PA 15213-3890, U S A .

R. T. BAILEY
Department of Mechanical Engineering, University of Florida, Gainewille, FL 3261 1 , U.S.A.

AND

H. L. NGUYEN AND R. J. ROELKE
National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH 44135, U S A .

SUMMARY
An efficient computer programme called GRID2D/3D has been developed to generate single and composite
grid systems within geometrically complex two- and three-dimensional (2D and 3D) spatial domains that
can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation
methods based on transfinite interpolation. The distribution of grid points within the spatial domain is
controlled by stretching functions and grid lines can intersect boundaries of the spatial domain ortho-
gonally. GRID2D/3D generates composite grid systems by patching together two or more single grid
systems. The patching can be discontinuous or continuous. For 2D spatial domains the boundary curves are
constructed by using either cubic or tension spline interpolation. For 3D spatial domains the boundary
surfaces are constructed by using a new technique, developed in this study, referred to as 3D bidirectional
Hermite interpolation.

KEY WORDS Grid generation Surface generation

INTRODUCTION

Finite difference (FD) and finite volume (FV) methods are very powerful techniques for obtaining
solutions to partial differential equations that govern fluid flow problems. However, in order to
use these methods, it is necessary to replace the spatial domain of the problem being studied by a
finite number of discrete points known as grid points. The process of replacing a spatial domain
by a system of grid points is referred to as grid generation. Grid generation is a very important
part of FD and FV methods because the system of grid points used strongly affects the accuracy,
efficiency and ease with which these methods generate solutions. In some instances the ability or
inability to generate an ‘acceptable’ grid system determines whether FD or FV methods can or
cannot be used.

Even though tremendous advances have been made in grid generation techniques during the
past 15 years,’ - l o the generation of acceptable grid systems for geometrically complex three-
dimensional spatial domains remains a difficult problem. Recently, a very efficient and versatile
computer programme called GRID2D/3D has been developed which can generate grid systems

0271 -2O91/91/1 loOO1-31$15.50
0 1991 by John Wiley & Sons, Ltd.

Received February 1990
Revised July 1990

2 T. I-P. SHIH ET AL.

inside complex-shaped two- and three-dimensional (2D and 3D) spatial domains. GRID2D/3D is
so efficient that it is configured to run on PCs or PC-compatible computers, though it can also be
used on workstations and mainframes. The high efficiency of GRID2D/3D makes it especially
useful for spatial domains that deform with time. This is because for such spatial domains a
different grid system must be generated at each time level and the number of time levels can be
thousands or more. This paper describes GRID2D/3D.

The outline of the paper is as follows. First the various types of grid systems that can be
generated by GRID2D/3D are described along with their advantages and disadvantages.
Afterwards the methods used in GRID2D/3D to generate grid systems are presented. Then a
discussion is given of methods for generating parametric representations of 2D and 3D bound-
aries. Finally several examples of grid systems generated by GRID2D/3D are presented.

TYPES OF GRID SYSTEMS

Eiseman and Erlebacherg classified all possible grid systems that can be used by FD and FV
methods as follows. At the broadest level a grid system can be classified as structured, un-
structured or mixed, depending upon how the grid points are connected to each other (Figure 1).
A structured grid system in turn can be classified as a single grid or a composite grid. A single grid
is one that is based on a single boundary-fitted co-ordinate system, whereas a composite grid is
made up of two or more single grids patched together with each single grid having a different
boundary-fitted co-ordinate system. Depending upon how the different single grids are patched
together, a composite grid can further be classified as completely discontinuous, partially
discontinuous, partially continuous or completely continuous (Figure 2). The continuity or
discontinuity referred to here is concerned with that of the different boundary-fitted co-ordinate
systems at locations where they are patched together in a composite grid.

Of the grid systems mentioned above, the unstructured grid system is the most versatile and the
easiest to generate, especially for complicated-shaped spatial domains. However, the use of

Figure 1. Types of grid systems: (a) structured; (b) unstructured; (c) mixed

ALGEBRAIC GRID GENERATION 3

GRID 1

-- 6RID 2

6RID 1 (a' GRID 2

Figure 2. Types of composite grids: (a) completely discontinuous; (b) partially discontinuous; (c) partially continuous;
(d) partially or completely continuous

unstructured grid systems with FD and FV methods is still at a state of
Presently, FD and FV methods almost exclusively use structured grid systems, and those are the
ones that GRID2D/3D generates.

When a structured grid system is used with an FD or FV method to obtain solutions to fluid
flow problems, the structured grid system generated by GRIDZD/3D or any other computer
programme should satisfy a number of conditions.

The total number of grid points in the grid system should be kept to the minimum needed
for the FD or FV method to yield solutions of the desired accuracy. This condition is
important for computational efficiency and can be achieved by clustering grid points in
regions where they are needed (e.g. regions where gradients of the flow are large) and
scattering them elsewhere.
One set of grid lines (co-ordinate lines of the boundary-fitted co-ordinate system) should
always coincide with the boundary of the spatial domain regardless of the geometric
complexity or motion of that boundary (i.e. the grid system should be boundary-conform-
ing). This condition is important because it enables FD and FV methods to implement
boundary conditions easily and accurately for geometrically complex and/or deforming
spatial domains.
Grid lines that intersect a boundary should intersect that boundary perpendicularly so that
derivative boundary conditions can be implemented more easily and accurately. At the
interior of the spatial domain the angle of intersection between grid lines only needs to be
nearly orthogonal (i.e. between 45" and 135").

4 T. I-P. SHIH ET AL.

4. The spacings between grid points should change slowly from a region where grid points are
concentrated to a region where grid points are sparsely distributed, especially in regions
where gradients of the flow are large, This condition is important because Fourier
components which make up the solution reflect and refract at interfaces where grid spacings
change.

5. One set of grid lines should align with the flow direction. This condition is important for
convection-dominated flows when the aspect ratio of the control volume about each grid
point is very high and/or when the thin layer Navier-Stokes equations are used to study
such flows.

For complicated 2D and 3D flows within geometrically complex spatial domains it is usually
impossible to generate a single grid that would satisfy all of the above conditions at every part of
the spatial domain. For such problems it is necessary to generate a number of different single
grids, each of which satisfies the above five conditions at a different part of the spatial domain.
These single grids are then patched together to form a composite grid, which as noted earlier
can be completely discontinuous, partially discontinuous, partially continuous or completely
continuous.

Since complicated geometries invariably imply composite grids which can be generated by
using GRID2D/3D, below we describe the advantages and disadvantages of the various types of
composite grids in order to know when a specific type should be used for a given problem.

Completely discontinuous composite (CDC) grids

The major advantage of CDC grids such as the chimera grid'7-21 (Figure 2(a)) is that they are
the easiest to generate, For example, to generate a chimera grid over the spatial domain about an
aircraft, all one has to do is generate a series of single grids, one about each component of the
aircraft (e.g. one about the fuselage, another about the wing, and so on). The patching process
simply involves laying each single grid over the appropriate component of the aircraft, deciding
on the amount of overlap of different single grids and ensuring that the entire spatial domain is
filled with grid points. Since the geometry for each single grid can be made as simple as desired
and patching is trivial, the grid generation process is straightforward. Another important
advantage of CDC grids is that the structure of each single grid can be different from each other;
e.g. one single grid may have a C-C structure while another may have an 0-0 or an 0-H
structure. Thus it is possible to optimize each single grid for a different part of the spatial domain.
Still another advantage is that this is the easiest grid on which to do local grid refinement. For a
chimera grid one can refine the grid at any location by simply generating a very fine single grid
and then overlaying it wherever desired. Also, this type of grid can easily be applied to problems
in which one or more objects are moving relative to another object, such as the launching of
missiles from an aircraft." Finally, since composite grids are composed of a series of single grids,
it is possible to do computations on one single grid at a time. This will reduce computer memory
requirements considerably since only information on one single grid needs to reside in the
computer at any one time. This advantage is shared by all composite grids, continuous or
discontinuous.

The major disadvantage of CDC grids is that they are the most difficult to use in obtaining
solutions when compared to other types of composite grids. This is because interpolation schemes
are needed to transfer information from one single grid to another when and wherever two or
more single grids overlap.'*-'' Also, schemes used should ensure that properties such as
conservation and monotonicity are maintained in regions where two or more single grids overlap.

ALGEBRAIC GRID GENERATION 5

Finally, information is lost when transferred from a fine to a coarse grid; thus grid spacings of
different single grids should be approximately equal in regions where they overlap.

Partially discontinuous composite (PDC) grids

PDC grids (Figure 2(b)) are generated in the following manner. First, the spatial domain of the
problem being studied is partitioned into a number of non-overlapping, contiguous zones or
blocks. Next, a single grid is generated within each zone. Finally, patching of the single grids
simply involves putting each of the single grids into its respective zone. Thus PDC grids differ
from CDC grids in that the single grids of PDC grids to not overlap each other.

PDC and CDC grids have two important similarities. First, each single grid in both cases can
have a structure that is different from each other. Secondly, the number of grid points in each
single grid can be different from each other. Because of these two similarities, the major
advantages of PDC grids are the same as those of the CDC grids. However, since single grids in a
PDC grid do not overlap each other, PDC grids are somewhat more difficult to generate but are
easier to use than CDC grids. The main difficulty in using PDC grids is implementing boundary
conditions at interfaces where different single grids meet.” - 2 5

Partially and completely continuous composite gri&

Completely continuous composite (CCC) grids are grid systems in which all grid lines (i.e. co-
ordinate lines of the boundary-fitted co-ordinate system) and all of their derivatives of every order
are continuous at all interfaces where different single grids meet. In general, it is not necessary to
construct CCC grids. Typically, FD and FV methods only require continuity of the grid lines and
their first- and, occasionally, second-order derivatives at the interfaces where different single grids
meet. Composite grid systems with this limited degree of continuity are referred to as partially
continuous composite (PCC) grids.

Figure 2(c) shows a PCC grid in which the grid lines are all continuous but their first-order
derivatives have discontinuities. It can readily be seen in that figure that the slope of the grid lines
and the spacing between the grid lines change suddenly at the interface where the two single grids
meet. Figure 2(d) shows a PCC grid in which the grid lines and their first-order derivatives are
continuous everywhere, including the interface where the two single grids meet. Such PCC grids
have the same appearance as CCC grids.

The major advantage of PCC grids of the type shown in Figure 2(d) is that this is the easiest
grid system for FD and FV methods to use. This is because boundary conditions can be
implemented easily at interfaces where different single grids meet. In fact it is not even necessary
to treat the interfaces where different single grids meet as boundaries since computations can be
carried across them. For PCC grids the complete spatial domain of the problem can be mapped
onto a single transformed domain, even though different boundary-fitted co-ordinate systems
have been used in different parts of the spatial domain (Figure 3). Here it is important to note that
not all grid systems which appear to be continuous are continuous. Figure 4 shows a composite
grid that appears to be continuous but belongs to the PDC grids because it is impossible to map
the entire spatial domain onto one transformed domain.

The major disadvantage of PCC grids is that they are the most difficult to generate when
compared to CDC and PDC grids. Another disadvantage is that the structure and number of grid
points in each single grid must satisfy certain compatibility conditions in order to ensure
continuity. These compatibility conditions make it more difficult to optimize each single grid for a
specific area. They also make it more difficult to do local grid refinement.

6 T. I-P. SHIH ET AL.

i
,-GRID 1

/RID 2

,-GRID 3

,-GR!D 4

(b)

Figure 3. A continuous composite grid system made up of four single grids: (a) in x-y co-ordinate system; (b) in t-q
co-ordinate system

Figure 4. A partially discontinuous composite grid that appears like a partially or completely continuous composite grid

Thus there are many spatial domains for which it is extremely difficult, if not impossible, to
generate a PCC grid that is acceptable. However, when it is possible then the generation of such
grids is worthwhile because of the ease with which they can be used. References 2 6 3 1 show a
number of examples of how to construct PCC grids for complex-shaped 2D and 3D spatial
domains.

ALGEBRAIC GRID GENERATION 7

GRID GENERATION METHODS

All grid generation techniques are classified as either differential equation or algebraic methods.
Differential equation methods generate grid systems by solving a system of partial differential
equations (PDEs) which describes how grid points are to be distributed within the spatial
domain. In general, these methods require a significant amount of computational effort since the
systems of PDEs that must be solved are quasi-linear and often as complicated as the PDEs that
govern the fluid flow problem. Algebraic methods generate grid systems by interpolating between
boundaries of the spatial domain. Since no PDE needs to be solved in the grid generation process,
algebraic grid generation methods are computationally much more efficient than differential
equation methods.

Whether one uses a differential equation or an algebraic method, the grid generation process is
always iterative. This is because the ‘acceptable’ grid system is arrived at via trial and error after
generating a series of unsatisfactory grids. The effort of the iterative process is, of course,
compounded many times for spatial domains which can deform with time, since for such domains
a different grid system is needed for each time level and the number of time levels can be
thousands or more. Hence the efficiency of the grid generation process is extremely important for
problems with 3D spatial domains and for problems in which the spatial domain can deform.

Since GRID2D/3D is intended for complex-shaped 2D and 3D spatial domains and for spatial
domains that can deform with time, GRID2D/3D generates grid systems by using algebraic grid
generation methods. Depending upon the complexity and dimensionality of the spatial domain,
GRID2D/3D iises one of the following three methods, all of which are very similar and are
based on transfinite interp~lation:~’ -34 the two-boundary method,35* 36 the four-boundary
method3’, 3 8 and the six-boundary method.38* 39 These methods were chosen because of their
high efficiency and their ability to provide very precise controls over the distribution of grid
points in the spatial domain when used in conjunction with stretching function^.^'?^^ Also, these
methods can generate grid lines that intersect boundaries orthogonally.

By using these algebraic grid generation methods, GRID2D/3D generates single grids with grid
lines that are continuous and differentiable everywhere up to the second order. GRID2D/3D
generates composite grids by patching together two or more single grids. The patching can be
discontinuous or continuous, For continuous composite grids the grid lines are continuous and
differentiable everywhere up to the second order except at interfaces where different single grids
meet. At interfaces where different single grids meet, the grid lines are only differentiable up to the
first order.

In order to use the two-, four- and six-boundary methods to generate grid systems, the
boundaries of the spatial domains must be represented mathematically in parametric form. This
is a difficult problem for complicated-shaped spatial domains because the boundaries of such
domains are complicated as well. In GRID2D/3D, parametric equations for boundary curves of
2D spatial domains are generated by either spline in te rpola t i~n~~ or tension spline inter-
p0lation.4~ Parametric equations for boundary surfaces of 3D spatial domains can be generated
by a number of techniques, including linear Coons’ interp~lation,~’ bidirectional spline
interp~lat ion~~. 45 and bihyperbolic spline interp~lat ion.~~ In GRID2D/3D, parametric equa-
tions for these 3D surfaces are generated by a new technique, developed in this study, referred to
as 3D bidirectional Hermite interpolation. The details of the algebraic grid generation methods
used in GRID2D/3D are described below.

TWO-, FOUR- AND SIX-BOUNDARY METHODS

As mentioned, GRID2D/3D generates grid systems by using either the two-, four- or six-
boundary method. All three methods can generate grid systems in 3D spatial domains; the two-

8 T. I-P. SHIH ET AL.

and four-boundary methods can also generate grid systems in 2D spatial domains. In this section
the details of these methods are described. Our step-by-step descriptions of the methods follow
closely those of Yang and Shih.36 It is our intention to present the methods in a clear manner so
that the reader might easily implement them.

The two-boundary method

36 is intended for problems in which it is only necessary to map
correctly two arbitrary-shaped boundaries of the spatial domain. If the remaining boundaries are
straight lines in the 2D case or flat surfaces in the 3D case, then all boundaries can be mapped
correctly. Implementation of this method involves the following eight major steps? (1) define the
nature of the co-ordinate transformation; (2) select a time-stretching function; (3) select two
boundaries of the spatial domain that must be mapped correctly (these two boundaries cannot
touch each other at any point); (4) describe the two boundaries selected in Step 3 in parametric
form; (5) define curves that connect the two boundaries by using transfinite interpolation;
(6) discretize the domain (i.e. replace the continuous domain of the problem by time levels and
grid points); (7) control the distribution of the grid points with stretching functions; (8) calculate
metric coefficients needed by the FD or FV method to obtain solutions.

The details of these eight steps are described below by generating a single grid in the 3D,
deforming spatial domain shown in Figure 5(a) for the problem of flow through a
converging4iverging channel. The spatial domain of interest is the region bounded by surfaces
1-6 in Figure 5(a), which deforms because surfaces 1 and 2 deform with time.

The two-boundary

surface

Figure 5. Spatial domain: (a) in x-y-z-r co-ordinate system; (b) in t-q-c-~ co-ordinate system

ALGEBRAIC GRID GENERATION 9

Step I : Define the co-ordinate transformation. The first step is to define the co-ordinate
transformation between the co-ordinate system of the spatial domain and the boundary-fitted co-
ordinate system of the transformed domain. For 3D spatial domains with moving grid points, the
following co-ordinate transformation is sought:

(x, Y, z, t)++(t , v , r, (la)

t = t (t) , x=x(t, ?, c, 21, Y = Y (t , ?, r, 71, z=z(t , 'I, c, z), (W

or, more specifically,

where x, y , z and t represent the co-ordinate system of the 'physical' domain and 5, 'I, [and t
represent the boundary-fitted co-ordinate system of some transformed domain (Figures 5(a)
and 5(b)).

Step 2: Select a time-stretching function. The next step is to define a relationship between t
and t. For our example we set t equal to z, i.e.

t = z . (2)
Thus no time-stretching function is used. Time stretching may be useful when variable time-step
sizes are used with FD or FV schemes that involve information at more than two time levels.

Step 3: Select two boundaries of the spatial domain. The third step is to select the two
boundaries of the spatial domain that are to be mapped correctly. These two boundaries must not
intersect each other at any point. For the spatial domain of Figure 5(a) we select boundary
surfaces 1 and 2. Since t, 'I, c and t represent a boundary-fitted co-ordinate system, boundary
surfaces of the spatial domain in the x-y-z-t co-ordinate system must correspond to co-ordinate
planes in the 5-q-C-z co-ordinate system. We choose surfaces 1 and 2 to correspond to co-
ordinate planes v = 0 and 'I = 1 respectively (Figure 5), i.e.

where Xi, Yi and Zi are the x-, y- and z-co-ordinates of surface i, i = 1,2. The remaining four
boundaries-surfaces 3,4,5 and 6-are mapped to co-ordinate planes t = 0, 5 = 1, c = 0 and
t: = 1 respectively (Figure 5).

Step 4: Describe the two boundaries selected in parametric form. Once the two boundaries have
been selected, the next step is to represent these two boundaries in parametric form as suggested
by the form of equations (3) and (4). Equations (3) and (4) also tell us that the three parameters
which must be used to describe surfaces 1 and 2 are t, r and 7. In this example we assume that the
parametric equations describing surfaces 1 and 2 are given and they are

X, = t /L, , Y, = Asin(wt)[l -cos(2lct)][l -cos(2lcC)], 2, = r/Ly, (5)

X2 = (/L,, Y2 = Ly-Asin(wz)[1-cos(2n~)][1-cos(2n~)], z2 = elLy3 (6)

10 T. I-P. SHIH ET AL.

where A, w, L,, L, and L, are given constants. If parametric equations are not given, then
GRID2D/3D can generate them by using either spline or tension spline interpolation (see next
section).

Step 5: Define curves connecting boundaries using transJnite interpolation. A number of
different transfinite interpolation techniques can be used to derive curves which connect the two
boundaries chosen in Step 3. Here we consider two such methods: transfinite interpolations based
on Lagrange and Hermite blending functions.

When Lagrange interpolation (also known as linearly blended transfinite interpolation) is used
to generate connecting curves between surfaces 1 and 2, the resulting curves have the following
functional form:

where Xi, Yi and Zi (i = lY2) are given by equations (5) and (6). The functions I, and I, are
blending functions which connect two points-one on each surface having the same t-, [- and
.r-values. They are constrained by I, (q = 0) = 1, Il (q = 1) = 0, I,(q = 0) = 0 and I, (q = 1) = 1.
With these constraints, I, and I , become

I l (t l) = 1 - ‘1, Mtl) = tl- (8)
Substitution of equation (8) in equation (7) yields the desired linear connecting curves:

4 5 , ?, 5, T) = Zl(& C, T) (l - ?) + Zz(t, C, T) V . (9c)
It is often desirable for connecting curves to intersect boundaries orthogonally so that

derivative boundary conditions can be implemented accurately. Since one set of curves described
by equation (9) are straight lines, they will not in general intersect boundaries orthogonally. One
way to remedy this is to use transfinite interpolation based on Hermite interpolation to form the
connecting curves. Hermite interpolation allows specification of derivatives at end points of
curves, enabling one to force orthogonality at boundaries. When this method is used to generate
connecting curves between surfaces 1 and 2, the resulting cubic curves have the following
functional form:

4 5 , V , Cy = L 7)h1(~) + xz(t, C, ~) h z (q)

ALGEBRAIC GRID GENERATION 11

where Xi, Yi and Zi (i = 1,2) are given by equations (5) and (6). The functions h,, h,, h, and
h, are blending functions which connect two points-one on each surface having the same
t-, c- and r-values. They are constrained by hl(q = 0) = 1, h, (q = 1) = 0, ahl(q = O)/aq = 0,
ah,(? = i)/aq = 0, h,(q = 0) = 0, h,(q = 1) = I, ah,(? = oyav = 0, ah2(? = iyaq = 0,
h,(q = 0) = 0, ah,(? = oyaq = 1, h,(q = 0) = 0,

h, = q 3 - q2. (11)

We choose values for ax((, q = 0, c, ?)/aq, axg , q = 1, c, t)/aq, ayg, = 0, c, t)/aq,
ay(<, 1 = 1, c, r)/aq, az(5, q = 0, c, r)/aq and az(5, q = 1, t, T)/aq so that connecting curves given
by equation (10) will intersect surfaces 1 and 2 orthogonally. For surface 1 this will occur when the
cross product of n (a vector normal to surface 1) and e, (the vector tangent to the connecting
curve) is zero. This will be the case when

h3(q = I) = 0, ah,(q = iyaq = 0,
h,(q = 1) = 0, ah,(? = O)/aq = 0, and ah4(q = l)/aq = 1. With these constraints, h, , h, , h ,
and h, become35

h , = 2+ - 312 + 1, h, = -2q3 + 3 q 2 , h, = ‘13 - 2r12 + ?,

Similarly, the connecting curves will intersect surface 2 orthogonally when

K , (& 5, T) and K 2 (& c, T) in equations (12) and (13) are known as ‘K-factors’ and are chosen
by trial and error so that no overlapping of the connecting curves takes place in the interior
of the spatial domain. For our problem the ‘K-factors’ were set equal to a constant
(i-e. Kl(t , c, d = w e , c, 7) = 0.2).

The values of ax, (5 , c, z)/at, a Y , (t, c, z)/at, ax,(t, c, T)/a<, a Y2(t,[, r)/at , etc. in equations
(12) and (13) can easily be found by analytically differentiating equations (5) and (6) or by using
finite difference formulae. Thus substitution of equations (11) to (13) in equation (10) yields the
desired cubic connecting curves based on Hermite interpolation.

Sic? 6: Discreiize the domain. Steps 1-5 map the domain in the x-y-z-t co-ordinate system
onto the t - p - r co-ordinate system. Now we need to discretize the domain, i.e. replace the
continuous domain by time levels and grid points.

Here the time domain is replaced by equally incremented time levels, i.e.

~ “ = n A z , n = 0 , 1 , 2 , (14)

In the above equation, T” denotes the time at time level n and Ar denotes the constant time step

12

Y

4

T. I-P. SHIH ET AL.

’ f

Figure 6. Grid system: (a) in x-y-z-f co-ordinate system; (b) in <-tp[--7 co-ordinate system

size. The spatial domain in the t-qx-~ co-ordinate system is replaced by IL x JL x K L equally
spaced grid points (Figure qb)). The locations of these grid points are given by the ordered triples
(C 9 41 9 C k 1 defined by

ti = (i - l)AC, V j = ci - l)Aq, C k = Ck - 1)AL (154

1
A t = ~

I L - 1 ’
1

AC = ~

1
A,, = ~

J L - 1 ’ K L - 1 ’

where i = 1,2, . . . , IL, j = 1 ,2 , . . . , JL and k = 1 ,2 , . . . , KL. By substituting equation (15) in
equation (lo), we obtain the locations of the grid points in the x-y-z-t co-ordinate system
(Figure 6(a)).

Step 7: Control the distribution of gridpoints. At this point we need to examine the grid system
shown in Figure 6(a) and ask: is the distribution of grid points satisfactory? In order to answer this
question, we need to consider the physics of the problem for which the grid is generated. For
accurate solutions, grid points should be clustered in regions of the spatial domain where sharp
gradients in the dependent variables exist. Such clustering can be achieved by the use of stretching
functions.40941 For flow within the 3D spatial domain shown in Figure 5(a) we expect steep
gradients near walls (surfaces 1 , 2 , 3 and 4). Grid points can be clustered near surfaces 1 and 2 by
replacing q in equation (10) by

where B, is a constant greater than unity. More clustering takes place in the q-direction near q = 0
and q = 1 as B,, approaches unity. In a similar manner, grid points can be clustered near surfaces 3
and 4 by replacing < in equation (10) by

where is a constant greater than unity that acts in the t-direction as p, does in the ?-direction.
The new distribution of grid points in the x-y-z-t co-ordinate system after stretching is shown in
Figure 7.

ALGEBRAIC GRID GENERATION 13

i

Figure. 7. Grid system in the x-yz-t co-ordinate system after stretching

Step 8: Calculate metric coeficients. Once we obtain a satisfactory distribution of grid points
in the x-y-z-t co-ordinate system, we are ready to calculate metric coefficients. Metric coefficients
appear in the governing equations when they are transformed from the co-ordinate system of the
'physical' domain (x-y-z-t in our example) to the boundary-fitted co-ordinate system (5-q4-t).
With the co-ordinate transformation described by equation (l), the metric coefficients which
appear are T,, rr, qr, C,, r,, qx, l,, ry , qy , cy, r,, qz and C,. These metric coefficients can be calcu-
lated by the following expressions:2. 39

7, = 1, (18a)

r, = (Y& - YCZ, ,) /J , (18b)

r, = - CX?(Y,ZC - Y c Z J - Y z (X , Z c - x g ,) + Z,(X,YC - X C Y ,) I / J , (184

4, = - (Y s . Z c - Y , Z ,) / J ¶ (184

?r = CX?(Ys.ZS. - Y c Z J - Y A X C Z S . - x p ,) + Z,(X,YC - X , Y ,) l / J , (18e)

ex = (Y p s - Y , , Z c) / J , (18f)

ry = - (X , , Z c - XcZ, ,) /J .

t l y = - (X $ s - x&/J,

sy = - (X c Z , , - X, ,ZC) /J ,

r z = (X, ,YC - XcY, ,) /JY

4. = --(XSYC - X , Y ,) / J ,

c z = (X t Y , , - X , Y ,) / J ,

J = Xc(Y ,ZS . - YCZ,) - X,(Y,ZC - Y C Z O + Xy(Ys.Z, , - Y S Z ,) . (18h)
The derivative terms x,, x,,, xC, yc , y,,, ye, z,, z,, and ze in equation (18) can be evaluated either
analytically by differentiating equation (10) or numerically by using finite difference formulae.
The correct way to evaluate these derivatives depends upon how the governing equations written
in the boundary-fitted co-ordinate system are cast. This important topic is addressed in
References 47-50. The derivatives x, , y , and z, should be evaluated numerically.

The four-boundary method

The four-boundary method for generating grid points is intended for problems where four
boundaries of a spatial domain need to be mapped correctly. This method3'* 38 is an extension of
the two-boundary method and as such consists of the same eight major steps. The eight steps of

14 T. I-P. SHIH ET AL.

t

Figure 8. Spatial domain: (a) in x-y-t co-ordinate system; (b) in t-q-z co-ordinate system

this method are described below by generating a single grid inside the 2D, non-deforming spatial
domain shown in Figure 8(a).

Step 1: Define the co-ordinate transformation. For the 2D, non-deforming spatial domain
shown in Figure 8(a) we seek a co-ordinate transformation of the form

(x, Y, t) tt (5 , ?, 7) (194

t = t (z) , x = 4 5 , ?), Y = Y(5, ?I. (19b)

or, more specifically,

Step 2: Select a time-stretching function. Here t is set equal to z as shown by equation (2).

Step 3: Select four boundaries of the spatial domain. Since the spatial domain of Figure 8(a)
has only four boundaries, all four boundaries are selected. We choose curves 1, 2, 3 and 4 to
correspond to co-ordinate lines q = 0, q = 1, 5 = 0 and 5 = 1 respectively (Figure 8), i.e.

Xl = x(5, rl = 0) = XI(51,

x, = 4 5 , v = 1) = X2(5),
x, = 4 5 = 0, r l) = X,(tl) ,

x, = x(5 = 1, r l) = X4(?)9

y, = Y(5, rl = 0) = Y1(5),

y, = Y(5,V = 1) = Y2(5)7
Y’ = Y(5 = 0 9 q) = Ydrl),
Y4 = Y (5 = 1, v) = Y4(?).

(204

(20b)

(204

(204
Here Xi and Yi are the x- and y-co-ordinates of curve i, i = 1,2, 3,4.

Step 4: Describe the four boundaries selected in parametric form. Having selected four bound-
aries, we now need to represent these boundaries in parametric form as suggested by equation
(20). Here tension spline4’ was used to obtain parametric equations for the four curves in terms of
the parameter 5 for curves 1 and 2 and in terms of q for curves 3 and 4 (see next section).

Step 5: Map the spatial domain. The four-boundary method maps the spatial domain to the
transformed domain in two steps. The first step is essentially the same as Step 5 of the two-
boundary method in which we select two of the four boundaries which do not touch each other
and which have been described parametrically using the same parameter (either { or q). As in Step
5 of the two-boundary method, curves that connect these two boundaries are specified by using
Hermite transfinite interpolation. When this step is completed, the two boundaries that were
selected will be mapped correctly, but the other two boundaries will in general be mapped

ALGEBRAIC GRID GENERATION 15

incorrectly. To remedy this, a second step is performed where the mapping constructed during the
first step is modified so that the other two boundaries will also be mapped correctly.

Here we shall first define curves that connect curves 1 and 2 such that only curves 1 and 2 will
be mapped correctly. Afterwards we will modify the connecting curves so that curves 3 and 4 will
also be mapped correctly. Curves which connect curves 1 and 2 are described by the following
Hermite interpolation expressions:

where hl, h,, h, and h4 are given by equation (11). The values of the partial derivatives in
equation (21) will be given shortly.

Equation (21) maps curves 1 and 2 correctly but not curves 3 and 4. In order to map curves 3
and 4 correctly, equation (21) must be adjusted as shown below:

4 5 , tl) = x’(5, tl) + Ax(<, tl), Y (t , tl) = Y ’ (5 , ‘I) + AY(t9 tl). (22)
Here

where

16 T. I-P. SHIH ET AL.

h, = 2t3 - 35’ + 1, h, = -2t3 + 3r2, h, = C 3 - 2t’ + 5, h, = t3 - C’. (24)

Substitution of equations (23) and (24) in equation (22) yields the desired expressions for x(5, q)
and y(t,q) which describe the mapping between the ‘physical’ domain and the transformed
domain.

We still need to specify the derivative terms in equations (21) and (23). Similar to the two-
boundary method, the first-order derivative terms are chosen so that the connecting curves will
intersect boundaries orthogonally. This time, however, the spatial domain is two-dimensional so
that we must use the dot product instead of the cross product to specify orthogonality.
Connecting curves will intersect curve 1 orthogonally when the dot product of ec (a vector tangent
to curve 1) and e, (the vector tangent to the connecting curve) is zero, It can be shown that this
will be the case when

Following this line of reasoning, expressions for other first-order derivative terms in equations
(21) and (23) are given below:

Here K , (t) and K,(C) were chosen to be equal to 0-3, while K 3 (q) and K J q) were chosen to be
equal to 0.1. Methods for determining the second-order derivative terms present in equation (23)
are given in Reference 40. In our example these terms were set equal to zero.

Step 6: Discretize the domain. We discretize the domain in the t-q-r co-ordinate system by
replacing the temporal domain with equally incremented time levels and by replacing the spatial
domain with ZL x J L equally spaced grid points (Figure 9(b)). The time levels are described by
equation (14). The grid points are located at (ti, qj); t i and qj are given by equation (15). By
substituting equations (21), (23), (24), (25) and (26) in equation (22), we obtain the locations of the
grid points in the x-y-t co-ordinate system (Figure 9(a)).

Step 7: Control the distribution of gridpoints. In this example we choose not to use stretching
functions to redistribute the grid points within the spatial domain.

Step 8: Calculate metric coeficknts. For our 2D, non-deforming spatial domain the metric
coefficients which need to be evaluated are z,, t,, q,, 5, and qy. These metric coefficients can be
evaluated by using the following equations:

= 1, t, = Y,/J, V X = - Y.JJ, t y = - XJJ, q y = x</J, J = xc~q - x ,~ t - (27)

ALGEBRAIC GRID GENERATION 17

+ y

(b)
(a)

Figure 9. Grid system: (a) in x-y-t co-ordinate system; (b) in &q-r co-ordinate system

As before, the partial derivative terms in equation (27) can be evaluated either analytically or
numerically by using finite difference formulae depending upon how the governing equations
written in the boundary-fitted co-ordinate system are cast.

The six-boundary method

The six-boundary method for generating grid points is intended for 3D spatial domains in
which six boundaries of the spatial domain need to be mapped correctly. This method38. 39 is an
extension of the two- and four-boundary methods; thus it consists of the same eight major steps.
We shall illustrate the six-boundary method by generating a grid system within the deforming,
spatial domain shown in Figure 10(a). Of the eight major steps involved, only Steps 3 and 5 will be
described since the other steps are identical to those of the two- and four-boundary methods.

Step 3: Select six boundaries of the spatial domain. Since the spatial domain of Figure lqa) has
only six boundaries, all six boundaries are selected. We choose surfaces 1, 2, 3, 4, 5 and 6 to
correspond to co-ordinate planes q = 0, 11 = 1, 5 = 0, 5 = 1, r = 0 and [= 1 respectively, i.e.

XI = X(t , 'I = 0, (9 t) = XI((, r, TI,

x, = 4 5 , 'I = 1, r , 7) = X,(5, 5, z),

x3 = 4 5 = 0, 'I, r, 7) = X,(% r, z),

y, = Y(5, 'I = 0, r, r) = YI(t, r, r),
y2 = Y(59 'I = 1, (9 = Y2(5, r, z),

y3 = Y(5 = 0, 'I, r, = Y3('I, c, TI,

(284

(28b)

(284

SURFACE

5

i
SURFACE 2

SURFACE

SURFACE

SURFACE 1

S U R F K E 6

5

4

--f

(b)
SLIRFAIEE 6

(a)

Figure 10. Spatial domain: (a) x-yz-t co-ordinate system; (b) in t-tl4-f co-ordinate system

18 T. I-P. SHIH ET AL.

x4 = 4 5 = 1, ?, 5, z) = X4(4 5, z), Y4 = ~ (5 = 1, ‘19 5, T) = Y4(?, 5, 71, (28d)

x, = dt, t l 5 5 = 0, T) = X , (< , ?9 TI, Ys = A<, tl, l = 0, T) = Ys(t, v , 71, (284

Here Xi and Yi are the x- and y-co-ordinates of surface i, i = 1,2,3,4,5,6. The z-co-ordinates of
surfaces 1, 2, 3,4, 5 and 6 were omitted to shorten presentation.

Step 5: Map the spatial domain. We map the ‘physical’ domain to a transformed domain in
three steps. In the first step, correctly map two of the six boundaries by using the two-boundary
method. In the second step, correct the mapping completed in the first step by ensuring two more
boundaries are mapped correctly (same as Step 5 of the four-boundary method). Finally, in the
third step, correct the mapping completed in the second step by ensuring the remaining two
boundaries are mapped correctly.

Surfaces 1 and 2 will be mapped correctly by the following Hermite interpolation expressions:

x6 = x(<, ?, 5 = 1, t, = x6(<, ?, y6 = Y(<, ‘1, 5 = l, 7) = y6(<, 7). (28f)

X’(t9 t t 9 L r) = Xl(<, 5, r)h,(tl) + XAt, 5, r)h,(tl)

Here h , , h,, h3 and h4 are given by equation (11).
Surfaces 1,2,3 and 4 will be mapped correctly by the following equations:

x”(t, tl, 5, = x’(t, tl, 5, 7) + Ax’((, ?, L 71,

Y‘Yt, % c, .) = Y’(5, ?, 5 , T) + AYYt, tl, 5, 71,

where x’ and y’ are given by equation (29) and

Ax’({, 4, r, 7) = CX3(?, 597) - x’(t = 0, ?, L r) l h s (t)
+ cx4(?, 5, - x ~ t = I,?, c, m 6 (t)

a y (t = 1, tt, c, 7) a y e = 1, tl, c, -
at

In the above equations, h,, h,, h, and h, are given by equation (24).

ALGEBRAIC GRID GENERATION 19

All six surfaces of the spatial domain shown in Figure lqa)-namely surfaces 1, 2, 3, 4, 5
and 6-will be mapped correctly by the following equations:

where x” and y” are given by equation (30) and

hg = 2c3 - 35’ + 1, h i , = - 2C3 + 3rz, h l l = C3 - 2r2 + C, h12 = l3 - r2. (34)
Substitution of equations (29H31) in equation (32) yields the desired expressions for

x(5, q, r, z) and y (5, q, c, z) which describe the mapping between the ‘physical’ domain and the
transformed domain. We still need to specify the derivative terms in equations (29), (31) and (33).
Similar to the two- and four-boundary methods, the first-order derivative terms are chosen so
that connecting curves will intersect boundaries orthogonally. Here all second-order derivatives
were set equal to zero. Here we note that an expression for z (& q, C, z) is also needed and can be
derived in the same manner as x(t, q, r, T) and y(& q, C, 7).

Additional remarks

We conclude this section by mentioning three problems which must be dealt with when using
the two-, four and six-boundary methods.

First, slope discontinuities present in the boundaries of spatial domains propagate into the
interior of the grid systems generated by using these methods. These discontinuities in the slopes
of the grid lines are undesirable since they can lead to errors in the solution. To correct for this,
some technique should be used to smooth the grid. One way to smooth a grid system with slope
discontinuity is to apply a Laplacian operator to the region near the discontinuity, as will be
shown later.

Secondly, care must be taken when choosing the ‘K-factors’ and the stretching functions for the
two-, four- and six-boundary methods. Large ‘K-factors’ tend to produce grid lines with more
curvature. Such grid lines often overlap in the spatial domain or can at least form a grid system
which is very skewed. In general, numerical values for the ‘K-factors’ and the stretching functions

20 T. I-P. SHIH ET AL.

connecting C U W I c

line t-nt t o
curve c a t point b

line tangent to bandary d a t point b

Figure 11. Diagram showing how orthogonality of a connecting curve at a boundary does not guarantee orthogonality
after the connecting curve has been replaced by grid points

are arrived at in an iterative manner. A grid is first generated by using one set of inputs for the
'K-factors' and the stretching functions. Next, that grid is plotted (GRIDZD/3D contains a
graphics programme to plot grid systems that it generates) and inspected visually. On the basis
of that inspection, the inputs are modified accordingly. This process repeats until a satisfactory
grid has been obtained. Since GRID2D/3D is highly efficient, an acceptable grid system can be
generated within a short time.

Thirdly, when connecting curves are discretized to form grid points, the orthogonality which
was forced at the boundaries may be lost. Figure 11 illustrates this point. Between grid points a
and b, curve c is approximated by line segment a-b. The original 90" angle a between boundary d
and curve c has been replaced by angle B between boundary d and line segment a-b. In order for j?
to approximate a more closely, two things can be done. First, stretching functions can be used to
move point a closer to point b. Secondly, larger 'K-factors' can be used to force the orthogonality
further into the domain along curve c. In this way, orthogonality between the grid lines and the
boundary curves can be maintained after the discretization of the spatial domain.

METHODS FOR GENERATING PARAMETRIC REPRESENTATION OF
BOUNDARIES

In the previous section it was shown that in order to use the two-, four- and six-boundary
methods, it is necessary to represent boundaries of the spatial domain in parametric form. These
boundaries are curves for two-dimensional spatial domains and surfaces for three-dimensional
ones.

Parametric representation of curves and surfaces

Curves and surfaces can be described mathematically in several different ways. For example, a
curve in the x-y plane can be represented by y = f (x) orf(x, y) = 0. Alternatively we can describe
the same curve parametrically in terms of a parameter s by x = g(s), y = f [g (s)] = h(s). The
choice of s is rather arbitrary, the only restriction being that s must increase monotonically along
the curve. Here we note that all curves and surfaces can be represented by parametric equations
and that there is no one unique way of representing a curve or surface in parametric form.

In grid generation, information about a curve or surface is given either by an analytical
expression or by a set of co-ordinates which describe the locations of a finite number of discrete
points on the curve or surface. When information about a curve or surface is provided in the form
of an analytical expression such as y = f (x) , it is a straightforward matter to generate a set of
parametric equations for the curve or surface. When information about a curve or surface is given

ALGEBRAIC GRID GENERATION 21

by a finite number of discrete points, then some type of interpolation schemes must first be used to
approximate the curve or surface by an analytical expression before it can be represented in
parametric form.

In GRID2D/3D, two interpolation schemes can be used to generate curves in 2D and 3D,
namely cubic spline in t e rp~ la t ion~~ and tension spline interp~lat ion.~~ Tension spline inter-
polation should be used whenever the curve to be approximated possesses extreme curvature.
GRID2D/3D approximates 3D surfaces by using a new technique, developed in this study,
referred to as 3D bidirectional Hermite interpolation. Here we only present the 3D bidirectional
Hermite interpolation for generating 3D surfaces.

Three-dimensional bidirectional Hermite interpolation

It turns out that linear Coons’ interpolation (also known as transfinite bilinear interpolation)
sometimes does not produce satisfactory surface approximations. Also, if a boundary surface is
broken up into two or more subsurfaces with each subsurface generated by transfinite bilinear
interpolation, then that boundary surface will have discontinuous first-order derivatives at all
interfaces where different subsurfaces meet. Here a new technique for generating surfaces, referred
to as 3D bidirectional Hermite interpolation, has been developed which is as efficient as linear
Coons’ surface but does not have its shortcomings.

To illustrate the 3D bidirectional Hermite interpolation, consider the boundary surface
bounded by four twisted curves shown in Figure 12. Information about the four twisted curves
may be given in analytical form, or they may be put into analytical form from co-ordinates of a set
of discrete points located on the curves by using either cubic spline or tension spline interpolation.
In either case we end up with parametric equations describing each of the curves in the following
form:

Xi = Xi(Si), Yi = Yi(Si), zi = Zi(Si), (35)
where X i , Yi and Zi describe curve i, i = 1,2,3,4. The parameter si represents the approximate arc
length along curve i. Recall that for the two-, four- and six-boundary methods, boundary surfaces
in the spatial domain are mapped onto co-ordinate planes in the transformed domain. Here we
map the boundary surface shown in Figure 12 onto the t-q co-ordinate plane located at l = 0 in
which both 5 and 1 varied between zero and unity. Thus si in equation (35) must be related to
either < or q, depending upon i.

Figure 12 A boundary surface bounded by four twisted curves in the x-y-z-t co-ordinate system along with definitions
of vectors tangent and orthogonal to curve 1

22 T. I-P. SHIH ET AL.

By using the four-boundary method with Hermite interpolants, we obtain

(36i)

ALGEBRAIC GRID GENERATION 23

In the above equations, h,, h,, h3 and h4 are given by equation (11) and h,, h6, h, and h8 are given
by equation (24). The method for evaluating the partial derivative terms appearing on the right-
hand sides of equation (36) is described below.

The first-order partial derivative terms in equation (36) determine the shape of the surface
shown in Figure 12 bounded by the four twisted curves given by equation (35). These derivative
terms also determine whether grid lines on that surface will intersect the four twisted curves
orthogonally or not. Since the only information we have about the surface shown in Figure 12 is

24 T. I-P. SHIH ET AL.

the four twisted curves, these curves are used to derive expressions for the first-order derivative
terms in equation (36).

We shall illustrate how first-order derivative terms in equation (36) are calculated by deriving
expressions for ax(5, q = 0, = O)/aq, ay(5, q = 0, = O)/aq and az(5, q = 0, 5 = O)/aq. These
three derivative terms are evaluated along curve 1 in which q = 0, (= 0 and t varies between zero
and unity. The method for deriving first-order derivative terms along the other three twisted
curves (i.e. curves 2, 3 and 4 in Figure 12) will be similar to the procedure described below.

Expressions for the first-order partial derivative terms along curve 1 are derived in five steps:
(1) determine a vector which is perpendicular to the plane formed by the vectors tangent to curves
1 and 3 at one end of curve 1; (2) determine a vector which is perpendicular to the plane formed by
the vectors tangent to curves 1 and 4 at the other end of curve 1; (3) linearly interpolate between
the two vectors determined in Steps 1 and 2 and denote this vector function as Nel; (4) determine
a vector function that is parallel to the cross product of N,, and a vector function tangent to curve
1 (the vector function thus determined is assumed to be tangent to the surface that we wish to
approximate along curve 1); (5) determine first-order partial derivative terms along curve 1 by
forcing the vector function formed by the first-order derivatives to be parallel to the vector
function determined in Step 4. The details of these five steps are described below.

Step 1: Determine normal vector at one end of curve 1 . The vectors tangent to curves 1 and 3 at
5 = 0 and q = 0 are given by

ax,(? = 0) * + ay3(r = 0) + azdrl = 0) K,
all all all

Tq31 =

where I, J and K are unit vectors pointing in the x-, y- and z-directions respectively.
The vector perpendicular to the plane formed by the above two vectors is given by

Step 2: Determine normal vector at other end of curve 1. The vectors tangent to curves 1 and 4
at 5 = 1 and q = 0 are given by

ALGEBRAIC GRID GENERATION 25

The vector perpendicular to the plane formed by the above two vectors is given by

Step 3: Linearly interpolate between two normal vectors. In this step we linearly interpolate
between the two normal vectors obtained in Steps 1 and 2 to produce the following vector
function:

N<l = (l - t)N13 + gN14, (41)
where N,, and N14 are given by equations (38) and (40).

Step 4: Determine a vector function tangent to the surface. Since there are an infinite number of
surfaces that can pass through any given curve, a strategy must be developed to determine which
surface is to approximate the surface shown in Figure 12. Here the surface selected is the one that
will pass through curve 1 as well as curves 3 and 4. Thus the vector function tangent to the surface
at curve 1 can be approximated by

E,l = T,l x N,,, (42)
where N,, is given by equation (41) and T,, is a vector function tangent to curve 1 given by

Step 5: Determine expressions for first-order derivatives. Now that we know along which
surface partial derivatives with respect to q at curve 1 can be made, we can derive expressions
for the first-order partial derivative terms ax(& q = 0, 5 = O)/aq, ay(& q = 0, 5 = O)/aq and
az(t , q = 0,C = O)/aq that appear in equation (36). Since we desire grid lines on the surface to be
perpendicular to the boundary curve (curve 1 in this case), the vector function tangent to the ‘1-
direction, T,, , must be parallel to the vector function E,, derived in Step 4. This can be expressed
mathematically as

T,, x E,, = 0,

aY(t, ll = 0, r = 0)
all all all

(444
where

(44b)
ax((, ?J = 0, C = 0) + Wt, ll = 0, r = 0) K. I + T,l =

The desired expressions for the first-order partial derivative terms are obtained from equation
(44) in a manner very similar to the derivation of equation (12). Again, the ‘K-factors’ which
appear in equation (12) can also be used here to ensure that grid lines do not overlap each other
and to create a smoother surface.

26 T. I-P. SHIH ET AL.

GENERATION OF SINGLE AND COMPOSITE GRIDS

In the previous sections the details of the algebraic grid generation methods used in GRID2D/3D
have been described. In this section we demonstrate the usefulness of GRID2D/3D by using it to
generate a number of single and composite grids within complex-shaped 2D and 3D spatial
domains. Recall that a single grid is a grid system based on one boundary-fitted co-ordinate
system and a composite grid is a grid system made up of two or more single grids patched
together.

Single gricis

While illustrating the two-, four- and six-boundary methods, several single grids were gener-
ated (Figures 6, 7 and 9). In this subsection we present a brief discussion on how to smooth
discontinuities in grid systems that arise from boundary discontinuities.

Figure 13(a) shows a 2D single grid around a sharp bend generated by using the two-boundary
method. This figure illustrates how boundary discontinuities can propagate into the interior of
the grid. The slope discontinuity of the ?-grid lines along i = I, can be eliminated by applying the
following equations:

~ 7 . f ’ = ~ ; , j + a (~ ; + , , j - - ~ ; . j + ~ l - i , j) , (454

x ; , y = x ; , j + . (x ; + l , j - 2 x ; , j + x ; - , , j) , (43-9
where o! is a constant (I 05), i = I, - my . . . , I,, . . . , I , + m (m can be zero or some positive
integer constant) and j = 2, 3, . . . , JL - 1. In order to smooth the grid shown in Figure 13(a),
equation (45) needs to be applied a number of times, i.e. n = 0,1,2,3, . . . with n = 0 being the grid
shown in Figure 13(a), n = 1 being the first correction, n = 2 being the second correction and so
on. By using equation (45) repeatedly, the grid shown in Figure 13(a) was smoothed as shown in
Figure 13(b).

Composite grids

GRID2D/3D can generate composite grids which are completely discontinuous, partially
discontinuous and partially continuous (Figure 2). For completely or partially discontinuous
composite grids such as those shown in Figures 2(a) and 2(b), each single grid within the
composite grid can be different from any other in structure and in the number of grid points. Thus
each single grid within such composite grids can be generated independently of the other single
grids in the manner described in the section ‘Two-, four- and six-boundary methods’. How the

t ’

Figure 13. Spatial domain with a boundary discontinuity: (a) grid system generated by the two-boundary method, (b) grid
system after smoothing

ALGEBRAIC GRID GENERATION 27

different single grids of such composite grids are patched together once they are generated is
described in the section ‘Types of grid systems’. Since discontinuous composite grids can be
generated rather easily and patching is trivial, no further discussions concerning them will be
given.

For partially continuous composite (PCC) grids, each single grid within them must satisfy a
number of compatibility conditions so that when the different single grids are patched together
the resultant composite grid will have some degree of continuity (see section ‘Types of grid
systems’). PCC grids such as the one shown in Figure 2(d) are often difficult to generate. However,
when it is possible to generate them, they are the easiest to use with FD and FV methods to
obtain solutions to partial differential equations. Below we discuss how PCC grids can be
generated.

Partially continuous composite grids

PCC grids are generated by GRID2D/3D in two major steps. The first step involves parti-
tioning the spatial domain into zones. The second step involves constructing grid systems that
will be continuous from one zone to another. These two steps are described in detail below.

Partitioning. The first step in constructing a PCC grid is to partition the spatial domain of
interest into a finite number of contiguous zones. The partitioning process involves answering
three interrelated questions: (1) How should the spatial domain be partitioned into zones?
(2) Based on that partition, what grid structure is to be used within each zone (e.g. C-C, C-H,
0-H, . . .)? (3) Based on that partition and grid structure selections, how should the different
zones be mapped to the transformed domain so that the resultant composite grid will have some
degree of continuity? The answers to these questions depend on the geometry of the spatial
domain and the physics of the problem for which the grid is being generated. For any given
problem, several different choices are usually possible. However, for simplicity, the choice
containing the least number of zones is often the most desirable.

An example illustrating one strategy for partitioning is shown in Figure 3(a). The boundaries of
that spatial domain contain a backward-facing step, a flat wall and a wedge-shaped obstacle. The
fluid is flowing from left to right. In Figure 3 the spatial domain is partitioned by using free
streamline theory. More specifically, a new zone is set up wherever separation is expected (e.g. at
the backward step and at the rear of the wedge-shaped obstacle) or where a flow will separate into
two streams (e.g. at the nose of the wedge-shaped obstacle). The structure of the grid within each
zone in Figure 3(a) was chosen to be H-type. This structure aligns the main flow direction with the
grid lines, which is important because it reduces dissipation error and permits the use of the thin
layer Navier-Stokes equations. Also, this structure allows grid lines to be clustered near solid wall
boundaries readily as well as allowing continuity of grid lines and their derivatives from one zone
to another. Figure 3(b) shows how the different zones in Figure 3(a), each of which will have a
different boundary-fitted co-ordinate system, are mapped onto the same transformed domain.

As a second example, consider the 2D inlet of an aircraft engine shown in Figure 14(a). This
geometry would be awkward to handle with a single grid owing to the separation of the internal
flow from the external flow by the cowl. Figures 14(a) and (14b) show a partitioning of this spatial
domain into two zones and the transformed domain to which it is mapped. Other configurations
involving more than two zones are certainly possible, but more complicated configurations are
unnecessary unless the physics of the flow dictates their use.

Grid generation with patching. Once we have partitioned the spatial domain of interest into
zones, we are ready to generate a grid for each zone. For partially continuous composite (PCC)

28 T. I-P. SHIH ET AL.

Figure 14. Inlet of a turbojet engine; (a) partitioning in the x-y-t co-ordinate system; (b) partitioning in the {-q-7
co-ordinate system

grids, the grid generated for each zone must be such that when they are patched together the
resultant composite grid has some degree of continuity. It turns out that this requirement
necessitates a few minor modifications in the two-, four- and six-boundary methods presented
earlier. In this section these modifications are described in the framework of the two-boundary
method by applying it to generate a PCC grid in the 2D inlet of the aircraft engine shown in
Figure 14(a).

Step 1: DeJne the co-ordinate transformation. We seek a co-ordinate transformation of the
form given by equation (19).

Step 2: Select a time-stretching function. t is set equal to t according to equation (2).

Step 3: Select two boundaries of each zone. We choose curves 1 and 2 for zone 1 and curves 5
and 6 for zone 2 (Figure 14). For each zone we map these two curves to co-ordinate lines q = qlow
and q = qhieh respectively. Here qlow, qhigh, tlow and thigh are defined as the co-ordinate lines in the
transformed domain which correspond to the boundaries of a zone. Thus for zone 1 we have

(464

(46b)

Xl = X (t , rl = t l l 0 W) = X,(O,

x2 = X(t3 q = qhigh) = x2(t),
Yl = Y (& tl = %ow) = YI(0,
y2 = Y(t9 tl = I?hiph) = y2(t)9

where qlow = 0, tfhigh = 0.5 and Xi and Yi are the x- and y-co-ordinates of curve i. For zone 2 we
have

x, = x(t , v = now) = XS(0,

x6 = x(<, q = qhigh) = x6(<)?

ys = Y(5, v = %ow) = YS(0 ,

y6 = Y (t 9 tl = qhiph) = y6(t;)?

(474

(47b)
where rjjOw = 0.5, qhieh = 1 and X i and Yi are the x- and y-co-ordinates of curve i. The other two
curves in each zone (curves 3 and 4 in zone 1 and curves 7 and 8 in zone 2) are mapped to co-
ordinate lines t = tlOw and t = thi& in the transformed domain. For our example, tlow = 0 and
(high = 1 for both zones 1 and 2.

Step 4: Describe the two boundaries of each zone in parametric form. We now need to represent
the four curves selected in Step 3 (two for each zone) in parametric form. Here tension spline
interpolation4' is used.

Step 5: Define curves that connect the two boundaries in each zone. x(5, q) and y(5, q) in each
zone can be defined by performing two mappings. The first mapping is from (x, y) to (t', q') with
the boundaries of both 5' and q' between zero and unity. The second mapping is from (r', q') to
(t, q) with the boundaries of 5 between 5 = tlow and 5 = thigh and the boundaries of q between

ALGEBRAIC GRID GENERATION 29

Figure 15. Grid system in the x-y-t co-ordinate system after stretching

q = vlOw and = qhigh. The first mapping can be accomplished by using the equations derived in
the section ‘Two-, four- and six-boundary methods’ with 5 and q replaced by t’ and q’. The second
mapping is given by 5 = tlow + (’(thigh - [low) and q = %ow + q’(?hi& - qlow)*

Step 6: Discretize the domain. We discretize the domain in the (-11-2 co-ordinate system by
replacing the temporal domain with equally incremented time levels and by replacing each zone
of the spatial domain with equally spaced grid points (see equations (14) and (15)).

Step 7: Control the distribution of grid points in each zone. For high-speed flows through the
inlet we expect large velocity gradients next to all solid surfaces. Thus grid points need to be
clustered near solid surfaces. With this in mind we use stretching functions to cluster grid points
near curves 1 and 2 for zone 1 and near curve 5 for zone 2. The new distribution of grid points is
shown in Figure 15.

Here we make a few comments about the continuity of grid lines and grid spacings across zonal
interfaces. In the above example, grid lines remained continuous along the portion of the zonal
interface which does not represent a ‘physical’ boundary. This is a desirable situation since it
simplifies the numerical algorithm which will be used to investigate the flow in the spatial domain.
Proper alignment of grid lines at the zonal interface in this case is made possible by using an
appropriate stretching function in each zone. Thus one should exercise care when constructing a
grid to ensure that grid lines remain continuous across the sections of the zonal interfaces which
touch each other in the spatial domain. For our example we also note that the grid spacing in the
?-direction must not change too abruptly across the zonal interface. The grid spacing in the q-
direction is defined as the distance between adjacent grid points along a grid line of constant (. As
with grid alignment, proper grid spacing at the zonal interface depends upon using an appropri-
ate stretching function in each zone.

Step 8: Calculate metric coe#cients. For the spatial domain shown in Figure 14, the five
metric coefficients which need to be evaluated are q, t,, q,, T,, and q,,. These metric coefficients
can be determined by using equation (27). We note that one-sided differencing should be used
when calculating partial derivative terms at grid points which lie along portions of the zonal
interface which do not touch in the spatial domain. Central differencing can be used at the other
grid point locations along the zonal interface.

ACKNOWLEDGEMENT

This research was supported by NASA grants NAG3-929 and NAG3-997. The authors are
grateful to NASA Lewis Research Center for this support.

30 T. I-P. SHIH ET AL.

REFERENCES
1. R. E. Smith (ed.), Numerical Grid Generation Techniques, NASA CP-2166, 1980.
2. J. F. Thompson (ed.), Numerical Grid Generation, Elsevier, New York, 1982.
3. J. F. Thompson, Z. U. A. Warsi and C. W. Mastin, ‘Boundary-fitted coordinate systems for numerical solution of

partial differential equations-a review’, J. Comput. Phys., 47, 1-108 (1982).
4. I. Babuska, J. Chandra and J. E. Flaherty (eds), Adaptive Computational Methods for Partial Diflerential Equations,

SIAM, Philadelphia, 1983.
5. K. N. Ghia and U. Ghia (eds), Advances in Grid Generation, FED Vol. 5 , ASME, New York, 1983.
6. J. F. Thompson, ‘Grid generation techniques in computational fluid dynamics’, AIAA J., 22, 1505-1523 (1984).
7. P. Eiseman, ‘Grid generation for fluid mechanics computations’, Ann. Review of Fluid Mech., 17,487-522 (1985).
8. J. F. Thompson, Z. U. A. Warsi and C. W. Mastin, Numerical Grid Generation, Elsevier, New York, 1985.
9. P. R. Eiseman and G. Erlebacher, ‘Grid generation for the solution of partial differential equations’, ICASE Report

10. S. Sengupta, J. Hauser, P. R. Eiseman and J. F. Thompson (eds), Numerical Grid Generation in Computational FZuid

11. A. Jameson and D. Mavriplis, ‘Finite volume solution of the two-dimensional Euler equations on a regular triangular

12. D. Mavriplis and A. Jameson, ‘Multigrid solution of the two-dimensional Euler equations on unstructured triangular

13. J. A. Desideri and A. Dervieux, ‘Compressible flow solvers using unstructured grids’, Von Karman Institute Lecture

14. S . R. Allmaras and M. B. Giles, ‘A second order flux split scheme for the unsteady 2-D Euler equations on arbitrary

15. D. J. Mavriplis, ‘Accurate multigrid solution of the Euler equations on unstructured and adaptive meshes’,

16. T. J. Barth and D. C. Jespersen, ‘The design and application of upwind schemes on unstructured meshes’, AIAA Paper

17. E. H. Atta, ‘Component-adaptive grid embedding’, in R. E. Smith (ed.), Numerical Grid Generation Techniques, NASA

18. E. H. Atta and J. Vadyak, ‘A grid overlapping scheme for flowfield computations about multicomponent configura-

19. J. L. Steger, F. C. Dougherty and J. A. Benek, ‘A chimera grid scheme’, in K. N. Ghia and U. Ghia (eds), Advances in

20. F. C. Dougherty, J. A. Benek and J. L. Steger, ‘On applications of chimera grid schemes to store separation’, NASA

21. J. A. Benek, T. L. Donegan and N. E. Suh, ‘Extended chimera grid embedding scheme with application to Viscous

22. M. M. Rai, ‘A relaxation approach to patched-grid calculations with the Euler equations’, J. Comput. Phys., 66,

23. M. M. Rai, ‘A conservative treatment of zonal boundaries for Euler equation calculations’, J . Comput. Phys., 62,

24. K. Hessenius and M. M. Rai, ‘Three-dimensional, conservative, Euler computations using patched grid systems and

25. M. M. Rai, ‘Navier-Stokes simulations of rotorlstator interaction using patched and overlaid grids’, J . Propulsion

26. P. D. Thomas, ‘Composite three-dimensional grids generated by elliptic systems’, AIAA J., 20, 119S1202 (1982).
27. K. D. Lee, N. J. Y. Huang and P. E. Rubbert, ‘Grid generation for general three-dimensional configurations’, in R. E.

28. P. E. Rubbert and K. D. Lee, ‘Patched coordinate systems’, in J. F. Thompson (ed.), Numerical Grid Generation,

29. R. L. Sorenson, ‘Grid generation by elliptic partial differential equations for a tri-element augmentor-wing airfoil’, in

30. R. M. Coleman, ‘Generation of boundary-fitted coordinate systems using segmented computational regions’, in

31. J. F. Thompson, ‘Composite grid generation code for general 3-D regions-the EAGLE code’, AIAA J., 26,271-272

32. S. A. Coons, ‘Surfaces for computer-aided design of space forms’, M I T MACTR-41, Cambridge, MA, 1967.
33. W. J. Gordon and C. A. Hall, ‘Construction of curvilinear coordinate systems and applications to mesh generation’,

34. W. J. Cook, ‘Body-oriented (natural) co-ordinates for generating three-dimensional meshes’, Znt. j . numer. methods

35. R. E. Smith, ‘Two-boundary grid generation for the solution of the three-dimensional compressible NavierStokes

No. 87-57, NASA Langley Research Center, Hampton, VA, 1987; also NASA CR-178365, 1987.

Mechanics ’88, Pineridge Press, Swansea, 1988.

mesh’, A l A A Paper 85-0435, 1985.

meshes’, AIAA Paper 87-0353, 1987.

Series 1988-05, 7-1 1 March 1988, pp. 1-1 15.

meshes’, AIAA Paper 87-1119, 1987.

AIAAIASMEISZAMIAPS First Natl Fluid Dynamics Congr., 1988.

89-0366, 1989.

CP-2166, 1980, pp. 157-174.

tions’, A l A A J., 21, 1271-1277 (1983).

Grid Generation, FED Vol. 5, ASME, New York, 1983, pp. 59-69.

TM-88193, 1985.

flows’, A l A A Paper 87-1126, 1987.

99-131 (1986).

472-503 (1986).

explicit methods’, AIAA Paper 86-1081, 1986.

Power, 3,387-396 (1987).

Smith (ed.), Numerical Grid Generation Techniques, NASA C P 2166, 1980, pp. 355-366.

Elsevier, New York, 1982, pp. 235-252.

J. F. Thompson (ed.), Numerical Grid Generation, Elsevier, New York, 1982, pp. 65-65

J. F. Thompson (ed.), Numerical Grid Generation, Elsevier, New York, 1982, pp. 633-651.

(1988).

Int. j . nwner. methods eng., 7,461-477 (1973).

eng., 8, 2743 (1974).

equations’, NASA TM-83123, 1981.

ALGEBRAIC GRID GENERATION 31

36. S.-L. Yang and T. I-P. Shih, ‘An algebraic grid generation technique for time-varying two-dimensional spatial

37. M. Vinokur and C. K. Lombard, ‘Algebraic grid generation with corner singularity’, in K. N. Ghia and U. Ghia (eds),

38. A. Rizzi and L. E. Eriksson, ‘Transfinite mesh generation and damped Euler equation algorithm for transonic flow

39. L. E. Eriksson, ‘Generation of boundary-conforming grids around wing-body configurations using transfinite

40. G. 0. Roberts. ‘ComDutational meshes for boundary layer problems’, Lecture Notes in Physics, Vol. 8, Springer,

domains’, Int. j . nwner. methodsjuids, 6, 291-304 (1986).

Advances in Grid Generation, FED Vol. 5, ASME, New York, 1983, pp. 99-106.

around wing-body configurations’, AIAA Paper 81-0999, 1981.

interpolation’, AIAA J., 20, 1313-1320 (1982).
.~ _ - _

Berlin, 1971, pp. 171-fi77.

(19831.
41. M. Vinokur, ‘On onedimensional stretching functions for finite-difference calculations’, J . Comput. Phys., So, 215-234

42. G. Bkkhoff and H. Garabedian, ‘Smooth surface interpolation’, J. Math. Phys., 39,258-268 (1960).
43. D. G. Schweikert, ‘An interpolation curve using a spline in tension’, J. Math. Phys., 45, 312-317 (1966).
44. C. de Boor, ‘Bicubic spline interpolation’, J . Math. Phys., 41, 212-218 (1962).
45. J. Ferguson, ‘Multivariable curve interpolation’, J . ACM, 11, 221-228 (1964).
46. H. Spath, ‘Algorithm 1 6 two-dimensional exponential splines’, Computing, 4, 225-233 (1969).
47. P. D. Thomas and C. K. Lombard, ‘Geometric conservation law and its application to flow computations on moving

48. R. G. Hindman, ‘Generalized Coordinate forms of governing fluid equations and associated geometrically induced

49. J. L. Steger, ‘On application or body conforming curvilinear grids for finite difference solution of external flow’, in

50. M. Vinokur, ‘An analysis of finite-difference and finite-volume formulations of conservation laws’, J. Comput. Phys.,

grids’, AIAA J., 17, 103&1037 (1979).

errors’, AIAA J., 20, 1359-1367 (1982).

J. F. Thompson (ed.), Numerical Grid Generation, Elsevier, New York, 1982, pp. 295-315.

81, 1-52 (1989).

